Polymer(Korea), Vol.31, No.3, 228-232, May, 2007
Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 개발
Development of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid)
E-mail:
초록
본 연구에서는 의료용 흡수성 재료 및 환경적합성 재료의 개발을 목적으로 생체흡수성의 poly(glycolic acid)(PGA)를 심선(芯線)에 제작하고, 환경분해성의 poly(butylene succinate-co-L-lactate)(PBSL) 및 poly[(R)-3-hydroxybutylate] (PHB)를 외층(外層)에 지닌 복합섬유를 제작하여, PGA의 가수분해에 의해 발생되는 glycolic acid에 의한 PBSL 및 PHB의 가수분해성의 향상을 도모하고자 하였다. 그 결과 PBSL/PGA 복합섬유에 대한 연신은 65 ℃에서 실시함에 의해 결정배향이 잘 배열된 섬유를 얻었다. 그러나 PHB/PGA 복합섬유는 50 ℃에서는 결정배향이 양호한 섬유를 얻을 수 없었기 때문에 50 ℃ 이상의 온도에서 연신을 실시해야 양호한 복합섬유를 얻을 수 있음을 알았다. 또한 in-line 연신에서는 섬유표면에 요철이 발생되기 때문에 on-line 연신을 실시하는 것이 매끄러운 표면을 얻을 수 있음을 알았다.
This purpose of this study is to enhance the hydrolysis of poly(butylene succinate-co-L-lactate) (PBSL) and poly[(R)-3-hydroxybutylate](PHB), to develop materials with advanced medical absorbability and environmental suitability. The first method involves increasing the bioabsorbability of poly(glycolic acid)(PGA) in the core of the fibrous complex, while the second method involves making a complex fiber containing PBSL and PHB in the outer layer for improving environmental degradability. Improvement in the hydrolysis of PBSL and PHB due to glycolic acid occurs by hydrolytic behavior of PGA. The drawing supporting the resulting PBSL/PGA fiber was executed at 65 ℃, where the orientation is well arranged in crystal form. Obtaining a PHB/PGA complex fiber in the proper crystal orientation at 50 ℃ was not possible since the arranged crystal orientation was only identified in drawings from temperatures above 50 ℃. Also, it is necessary to execute a smooth surface to achieve an on-line drawing since unevenness occurs in the fibrous surface from an in-line drawing.
- Kitao T, Kimura Y, Konishi T, Araki M, Sugiyama Y, Ohya S, Koubunnshi Ronbunshu, 41, 717 (1984)
- Furuhashi Y, Ito H, Kikutani T, Yamamoto T, Kimizu M, Sen-I Gakkaishi, 53, 356 (1997)
- Nakayama K, Saito T, Fukui T, Shirakura Y, Tomita K, Biochimica et Biophysica Acta, 827, 63 (1985)
- Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, Masamune S, Eur. J. Biochem., 124, 71 (1982)
- Mukai K, Yamada K, Doi Y, Int. J. Biol. Macromol., 14, 235 (1992)
- Tomasi G, Scandola M, Briese BH, Jendrossek D, Macromolecules, 29(2), 507 (1996)
- Hocking PJ, Marchessault RH, Timmins MR, Lenz RW, Fuller RC, Macromolecules, 29(7), 2472 (1996)
- Iwata T, Doi Y, Kasuya K, Inoue Y, Macromolecules, 30(4), 833 (1997)
- Holmes PA, Phys. Technol., 16, 32 (1985)
- Doi Y, Kunioka M, Nakamura Y, Soga K, Macromolecules, 21, 2722 (1988)
- Koyama N, Doi Y, Polymer, 38(7), 1589 (1997)
- Finelli L, Scandola M, Sadocco P, Macromol. Chem. Phys., 199, 695 (1998)
- Maekawa M, Pearce R, Marchessault RH, Manley RSJ, Polymer, 40(6), 1501 (1999)
- Motizuki M, Murase S, Inagaki M, Kanmuri Y, Kudo k, Sen-I Gakkaishi, 53, 348 (1997)