화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.3, 273-278, June, 2007
이산화탄소 흡착제거를 위한 허니컴 흡착소자의 제조 및 이의 특성
Preparation of Honeycomb Adsorbent for Carbon Dioxide Adsorption and Its Characteristics
E-mail:
초록
본 논문은 배연가스로부터 이산화탄소를 흡착 회수하기 위한 허니컴 흡착소자 및 공정에 관한 것이다. 세라믹섬유와 Na-X를 주원료로 제올라이트 종이를 제조하였다. 제올라이트 종이의 이산화탄소 흡착능을 향상시키기 위해서 Li+, Ca2+, K+ 이온교환 및 추가적인 표면코팅을 실시하여 그 특성을 분석하였다. Li+ 이온교환 방법은 이산화탄소 흡착능을 가장 많이 증가시켰지만 공정적용이 가능할 만큼의 흡착능 변화를 보이지 않았다. 반면 Na-X의 추가적인 표면코팅은 이산화탄소 흡착능을 증가시키는 효율적인 방법이었다. 제올라이트 종이를 성형하여 만든 허니컴형 흡착소자에 대한 이산화탄소 흡착파과 특성을 분석하였으며, 이의 결과로서 회전식 이산화탄소 흡착 농축공정의 적용 예를 보여주었다.
The honeycomb adsorbents and adsorption process for carbon dioxide removal from fuel gas were investigated. Zeolite paper was made with Na-X zeolite powder and ceramic fiber as raw materials. Li+, Ca2+ or K+ ion exchanges for Na-X zeolite and additional Na-X coating were performed on zeolite paper for increasing the carbon dioxide adsorption capacity, after that the adsorption characteristics of the samples were analyzed. Among the ion exchanged samples, Li+ ion exchanged zeolite paper was most promising but its carbon dioxide adsorption capacity was less than expected for process application. However, additional Na-X coating was found to be an effective method for increasing the carbon dioxide adsorption capacity of the zeolite paper for process application. The carbon dioxide breakthrough test of the honeycomb adsorbent prepared with the zeolite paper was studied, and fuel gas treatment capacity was calculated when the honeycomb adsorbent was used in the rotary adsorption process.
  1. Shimomura Y, Modern Power System, January, 15 (2003)
  2. Hughes RW, Lu DY, Anthony EJ, Macchi A, Fuel Process. Technol., 86, 1523 (2005)
  3. Bounaceur R, Lape N, Roizard D, Vallieres C, Favre E, Energy, 31, 2556 (2006)
  4. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995)
  5. Harlick PJ, Tezel FH, Microporous Mesoporous Mater., 76, 71 (2004)
  6. Gomes VG, Yee WK, Sep. Purif. Technol., 28, 161 (2002)
  7. Ishibashi M, Ota H, Akutsu N, Umeda S, Energy Conv. Manag., 37, 929 (1996)
  8. Walton KS, Abney MB, LeVant MD, Microporous Mesoporous Mater., 91, 78 (2006)
  9. Wirawan SK, Creaser D, Microporous Mesoporous Mater., 91, 196 (2006)
  10. Knowles GP, Graham JV, Delaney SW, Chaffee AL, Fuel Process. Technol., 86, 1435 (2005)
  11. Chaffee AL, Fuel Process. Technol., 86, 1473 (2005)
  12. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Microporous Mesoporous Mater., 62, 29 (2003)
  13. Xu X, Song C, Miller BG, Scaroni AW, Fuel Process. Technol., 86, 1457 (2005)
  14. Drage TC, Arenillas A, Smith KM, Pevida C, Piippo S, Snape CE, Fuel, 86, 22 (2007)
  15. Coutinho D, Balkus KJ, Microporous Mesoporous Mater., 52, 79 (2002)
  16. Yoo YJ, Kim HS, Han MH, Jang GI, J. Kor. Ceram. Soc., 39, 1035 (2002)
  17. Yoo YJ, Kim HS, Han MH, Sep. Sci. Technol., 40(8), 1635 (2005)
  18. Park JH, Beum HT, Kim JN, Cho SH, Ind. Eng. Chem. Res., 41(16), 4122 (2002)