IEEE Transactions on Automatic Control, Vol.52, No.3, 520-525, 2007
Observer-based fast rate fault detection for a class of multirate sampled-data systems
This note deals with the problem of observer-based fast rate fault detection for a class of multirate sampled-data (MSD) systems. Applying a lifting technique, a linear time-invariant (LTI) representation with slow sampling period is firstly obtained for the MSD systems and, based on this, an observer-based fault detection filter is considered as a residual generator. Then an optimization fault detection approach for LTI systems is modified to the residual generation for the MSD systems and, by solving a discrete-time Algebraic Riccati equation, a family of optimal solutions with causality constraint can be obtained. An inverse lifting operation on the generated residual implements its fast rate. The residual evaluation problem is also considered. A numerical example is finally given to illustrate the effectiveness of the proposed design techniques.