화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.308, No.2, 514-524, 2007
An H-II liquid crystal-based delivery system for cyclosporin A: Physical characterization
In the present study we demonstrate that large quantities of cyclosporin A and three dermal penetration enhancers (phosphatidylcholine, ethanol, or Labrasol) can be solubilized into reverse hexagonal (H-II) liquid crystalline structures composed of monoolein, tricaprylin, and water. The microstructural characteristics of these complex multi-component systems were elucidated by rheological, SAXS, and DSC measurements. Addition of up to 20 wt% phosphatidylcholine improved significantly the elastic properties of the systems (lower values of tan delta) and increased the thermal stability of the mesophases enabling us to solubilize up to 6 wt% cyclosporin A and two other enhancers (Labrasol and ethanol) to obtain stable mesophases at physiological temperature. Rheological measurements revealed that solubilization of cyclosporin A alone has a destabilizing effect on the reverse hexagonal phases: it caused a deterioration in the elastic properties of the systems, leading to more liquid-like behavior and resulting in very short relaxation times (0.04-0.1 s). Labrasol, solubilized at high concentrations (up to 12 wt%) into the liquid crystals, also demonstrated a destabilizing effect on the HII structure: the decreasing elasticity of the system was attributed to Labrasol's presumed locus at the interface and its ability to bind water, as shown by DSC measurements. Ethanol had a destabilizing effect similar to that of Labrasol, yet the effect appeared to be more pronounced, probably due to its higher water-binding capability. (c) 2007 Elsevier Inc. All rights reserved.