화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.4, 320-325, August, 2007
비수계 용매를 사용하는 마이크로파 환원법에 의한 서브마이크론 니켈 분말의 합성
Preparation of Submicron Nickel Powders with Non-aqueous Solvent In Microwave-Assisted Reduction Method
E-mail:
초록
본 연구에서는 재래식 및 마이크로파 합성법을 통하여 비수계 유기용매인 diethanolamine을 용매로 하여 초산니켈 수용액과 히드라진 수화물로부터 니켈 분말을 합성하였다. X선 회절분석, 주사 전자현미경 분석, 열분석 및 X선 광전자 분광기 분석등을 통하여 마이크로파의 비열적 효과 및 반응 조건이 니켈분말의 합성에 미치는 영향을 조사하였다. 재래식 합성과 비교해보면, 마이크로파를 이용한 합성에서 마이크로파의 비열적 효과에 기인하여 상대적으로 응집이 적게 일어나고, 입자 크기는 작고, 입도 분포는 균일하였다.
Nickel powders were prepared from an aqueous nickel acetate solution and hydrazine hydrate using diethanolamine as the nonaqueous organic solvent in the conventional and microwave synthetic method. It was investigated that microwave non-thermal effect and synthetic condition affect the preparation of nickel powders by means of X-ray diffractometry, scanning electron microscopy, thermal gravymetry analysis, and X-ray photoelectron spectroscopy analysis. Compared with the conventional synthetic method, less of aggregation, smaller particle size, and more uniform distribution of particle size were obtained in the microwave synthetic method due to the non-thermal effect of microwaves.
  1. Tseng WJ, Lin SY, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., A362, 160 (2003)
  2. Park SH, Kim CH, Kang YC, Kim YH, J. Mater. Sci. Lett., 22(21), 1537 (2003)
  3. Shoji H, Nakano Y, Matsushita H, Onoe A, Kanai H, Yamashita Y, J. Mater. Syn. Process, 6, 415 (1998)
  4. Degen A, Macek J, Nanostruct. Mater., 12, 225 (1999)
  5. Koltypin Y, Fernandez A, Rojas TC, Campora J, Palma P, Prozorov R, Gedanken A, Chem. Mater., 11, 1331 (1999)
  6. Hegde MS, Larcher D, Dupont L, Beaudoiin B, Elhsissen KT, Tarascon JM, Solid State Ion., 93, 33 (1997)
  7. Komarnent S, Pidugu R, Li QH, Roy R, J. Mater. Res., 10, 1687 (1995)
  8. Yu K, Kim DJ, Chung HS, Liang H, Mater. Lett., 57, 3992 (2003)
  9. Gao J, Guan F, Zhao Y, Yang W, Ma Y, Lu X, Kang J, Mater. Chem. Phys., 71, 215 (2001)
  10. Zheng HG, Liang JH, Zeng JH, Qian YT, Mater. Res. Bull., 36, 947 (2001)
  11. Li YD, Li CW, Wang HR, Li LQ, Qian YT, Mater. Chem. Phys., 59, 88 (1999)
  12. Hegde MS, Larcher D, Dupont L, Beaudoin B, Tekaia-Elhsissen K, Tarascon JM, Solid State Ion., 93, 33 (1997)
  13. Macek J, Degen A, Fizika A, 4, 309 (1995)
  14. Caddick S, Tetrahedron, 51, 10403 (1995)
  15. Jung KS, Kwon JH, Shon SM, Ko JP, Shin JS, Park SS, J. Mater. Sci., 39(2), 723 (2004)
  16. Jung KS, Ro JY, Lee JY, Park SS, J. Mater. Sci., 20, 2203 (2001)
  17. Degen A, Macek J, Nanostruct. Mater., 12, 225 (1999)
  18. Gao J, Guan F, Zhao Y, Yang W, Ma Y, Lu X, Hou J, Kang J, Mater. Chem. Phys., 71, 215 (2001)
  19. Hwa WJ, Jun SY, Lee YB, Park HC, Kim KH, Park SS, J. Korean Ind. Eng. Chem., 15(4), 429 (2004)