화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.45, No.4, 378-383, August, 2007
PRTMOCVD 법을 통한 단성분계 산화막의 적층형 구조로부터 Zirconium Titanate 박막의 제조
Fabrication of Zirconium Titanate Thin film from Layer-by-Layer Structure of Primitive Oxides prepared by PRTMOCVD
E-mail:
초록
Zirconium titanate(ZrxTi1-xO2)와 같은 다성분계 금속산화물의 박막을 형성함에 있어 비교적 저온에서 박막성분 간의 정확한 조성조절이 이루어지며 균일한 박막특성을 같게 하는 새로운 박막제조 공정방법을 제시하였다. 이 공정방법은 우선 다성분계 금속산화박막을 구성하는 단성분계 금속산화막들을 적층식구조로 형성하여 적절한 열처리로 고상확산 반응을 통한 단일상 다성분계 박막을 형성하는 것을 특징으로 한다. 본 연구에서는 단성분계 산화박막층을 형성하는 방법으로 나노두께의 박막을 형성할 수 있는 능력과 두께조절성이 우수한 PRTMOCVD(pulsed rapid thermal metalorganic chemical vapor deposition) 법이 개발 적용하였다. PRTMOCVD 법으로 ZrO2와 TiO2 단성분 산화막의 두께를 제어하면서 교차로 적층시킨 후 850 ℃의 질소분위기에서 30분간 열처리를 통한 박막간의 상호확산을 통해 ZrxTi1-xO2 다성분계 산화박막을 형성하였다. 박막내의 Zr과 Ti의 조성은 ZrO2와 TiO2 단성분 산화막의 두께로 조절하였다. 형성된 ZrxTi1-xO2 박막에 대한 상세한 물성을 분석하였다.
A novel fabrication method for the multi-component metal oxides such as zirconium titanate(ZrxTi1-xO2) has been suggested, which would yield the uniform film characteristics and control the film composition at relatively low process temperature. The method has the basic concept that firstly layer-by-layer structure is constructed with the primitive oxide layers, which are components of the desired multi-component oxides, and secondly the film is annealed at appropriate thermal conditions for the transformation to a single-phase multi-component oxides. In this study, PRTMOCVD(pulsed rapid thermal metalorganic chemical vapor deposition) possessing the superior thickness controllability was introduced to prepare ZrO2 and TiO2 thin film for zirconium titanate. Single-phase zirconium titanate thin films have been prepared successfully by the interdiffusion of oxide multilayers having several alternating layers of ZrO2 and TiO2. The Zr/Ti ratio of zirconium titanate could be controlled easily by altering the thickness of ZrO2 and TiO2 thin film.
  1. Wakino K, Minai K, Tamura H, J. Am. Ceram. Soc., 67(4), 278 (1984)
  2. Leoni M, Viviani M, Battilana G, Fiorello AM, Viticoli M, J. Eur. Ceram. Soc., 21(10), 1739 (2001)
  3. Parker FJ, J. Am. Ceram. Soc., 73(4), 929 (1990)
  4. Hirano S, Hayashi T, Hattori A, J. Am. Ceram. Soc., 74(6), 1320 (1991)
  5. Navio JA, Marchena FJ, Macias M, Sanchez-Soto PJ, Pichat P, J. Mater. Sci., 27(9), 2463 (1992)
  6. Daturi M, Cremona A, Milella F, Busca G, Vogna E, J. European Ceram. Soc., 18(9), 1235 (1998)
  7. Brinker CJ, Scherer GW, Academic Press, San Diego (1990)
  8. Nalwa HS, Academic Press, San Diego (1999)
  9. Barkman U, Auvinen A, Jokiniemi JK, Surf. Coat. Technol., 192(1), 81 (2005)
  10. Lee WG, Woo SI, J. Ind. Eng. Chem., 10(3), 1224 (2004)
  11. Bradley DC, Methotra RC, Gaur DP, Academic Press, London (1978)
  12. Jones AC, Leedham TJ, Wright PJ, Crosbie MJ, Lane PA, Williams DJ, Fleeting KA, Otway DJ, OBrien P, Chem. Vapor Depos., 4(2), 46 (1998)
  13. Gheorghies C, J. Cryst. Growth, 213(1), 112 (2000)
  14. Kim YK, Jang HM, Solid State Commun., 127(6), 433 (2003)