- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.19, No.2, 51-59, August, 2007
Wall charge effects on structural properties of a coarse-grained FENE polyelectrolyte confined in slit nanochannels by Brownian dynamics simulation
E-mail:
A polyelectrolyte chain confined in a slit nanochannel exhibits a structural transition from the one in free space. In this paper, the effect of the long-range electrostatic interactions between the xanthan polyelectrolyte and the slit wall on the confined xanthan conformation is investigated via the Brownian dynamics simulation. A neutral and two negatively charged surfaces of polydimethylsiloxane (PDMS) and glass are combined to make four kinds of slit channels with different charge characteristics: i) neutral-neutral, ii) glass-glass, iii) neutral-PDMS and iv) neutral-glass walls. Their walls are characterized by uniform surface charge densities determined from experimental data of zeta potential. Both the nonmonotonic chain size variation and the loss of long-range bond vector correlation, previously observed under confinement in the PDMS-PDMS slit, are also found in the neutral slit, demonstrating the nonelectrostatic origin of such crossover behaviors. As expected, the effect of wall charges is negligible at sufficiently high medium ionic strength of 100 mM but it becomes significant in the opposite limit of 0.01 mM. In the latter case, the high charge density of glass walls strengthens the effective confinement of a negatively charged polyelectrolyte and produces a xanthan structure comparable to that confined in a much narrower neutral slit. The obtained structural data suggest the possibility of controlling the structure of confined polyelectrolytes by the modification of surface charge characteristics of micro/nanofluidic devices in combination with the adjustment of the medium ionic strength.
Keywords:polyelectrolyte structure;slit nanochannel;finitely extendable nonlinear elastic (FENE);coarsegraining;Brownian dynamics simulation
- Allison SA, Macromolecules, 19, 118 (1986)
- Brochard-Wyart F, Tanaka T, Borghi N, de Gennes PG, Langmuir, 21(9), 4144 (2005)
- Chen YL, Graham MD, Pablo JJ, Randall GC, Gupta M, Doyle PS, Phys. Rev. E, 060901-4, 70 (2004)
- Chun MS, Park OO, Macromol. Chem. Phys., 195, 701 (1994)
- Chun MS, Lee S, Colloids Surf. A: Physicochem. Eng. Asp., 267, 86 (2005)
- Cordeiro CE, Molisana M, Thirumalai D, J. Phys. II France, 7, 433 (1997)
- Daoud M, Gennes PG, J. Phys. France, 38, 85 (1977)
- Doi M, Edwards SF, The Theory of Polymer Dynamics, Clarendon, Oxford (1986)
- Ermak DL, McCammon JA, J. Chem. Phys., 69, 1352 (1978)
- Fernandes MX, Huertas ML, Castanho MARB, Torre JG, Biochim. Biophys. Acta, 1463, 131 (2000)
- Hernandez-Ortiz JP, Pablo JJ, Graham MD, Phys. Rev. Lett., 140602/1-4, 98 (2007)
- Hur JS, Shaqfeh ESG, Larson RG, J. Rheol., 44, 713 (2000)
- Jendrejack RM, Schwartz DC, de Pablo JJ, Graham MD, J. Chem. Phys., 120(5), 2513 (2004)
- Jeon J, Chun MS, J. Chem. Phys., 154904/1-10, 126 (2007)
- Jian H, Vologodskii AV, Schlick T, J. Comput. Phys., 136, 168 (1997)
- Jo K, Dhingra DM, Odijk T, Pablo JJ, Graham MD, Runnheim R, Forrest D, Schwartz DC, Proc. Natl. Acad. Sci. U.S.A., 104, 2673 (2007)
- Manning GS, J. Chem. Phys., 51, 924 (1969)
- Odijk T, Macromolecules, 16, 1340 (1983)
- Ottinger HC, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms, Springer, Heidelberg (1996)
- Paradossi G, Brant DA, Macromolecules, 15, 874 (1982)
- Rotne J, Prager S, J. Chem. Phys., 50, 4831 (1969)
- Russel WB, Saville DA, Schowalter WR, Colloidal Dispersions, Cambridge University Press, Cambridge (1989)
- Sato T, Norisuye T, Fujita H, Macromolecules, 17, 2696 (1984)
- Sho T, Sato T, Norisuye T, Biophys. Chem., 25, 307 (1986)
- Tran-Canh D, Tran-Cong T, Korea-Aust. Rheol. J., 16(1), 1 (2004)
- Vliet JH, ten Brinke G, J. Chem. Phys., 93, 1436 (1990)
- Wang YM, Teraoka I, Macromolecules, 33(9), 3478 (2000)
- Warner HR, Ind. Eng. Chem. Fundam., 11, 379 (1972)