화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.5, 379-384, September, 2007
무기입자를 충전한 폴리우레탄 나노복합체의 합성 및 물성
Synthesis of Polyurethane Nanocomposite Filled Inorganic Particles and Their Properties
E-mail:
초록
본 연구는 열안정성을 향상시킨 무기나노 분말충전 나노복합재료를 우레탄 중합방법으로 제조하였다. 나노복합재료의 구조와 표면 특성은 XRD와 FT-IR을 통하여 알아보았고, 열안정성은 TGA와 DSC를 통하여 알아보았으며, SEM을 이용하여 복합재료의 모폴로지를 관찰하였다. 복합재료의 기계적 물성은 UTM을 사용하여 측정하였다. 실험 결과, MMT를 충전한 나노복합재료의 층간거리가 7.5 A 증가하였고, Silica 내 Si-O기에 의해 1038 cm-1에서 새로운 피크가 나타났다. 또한 열안정성과 기계적 물성도 폴리우레탄 매트릭스보다 향상된 것을 확인할 수 있었다.
The nanocomposites with inorganic nano powder, improved thermal stability, were prepared by urethane polymerization. The structure and surface properties of the nanocomposites were determined by X-ray diffraction and FT-IR, respectively. The thermal stabilities were studied using TGA and DSC. Their morphologies and mechanical properties were observed by SEM and UTM. As a result, the nanocomposites with MMT led to the increase of the silicate layers. The distance between layers of the nanacomposites with MMT was increased by 7.5 A and the new peaks at 1038 cm-1 were shown in the presence of the Si-O groups on the silica. The thermal stabilities of the nanocomposites were higher than those of pore polyurethane matrix. The nanocomposites had higher in mechanical properties than the pure polyurethane matrix.
  1. Saxena PK, Raut KG, Srinivasan SR, Sivaram S, Rawat RS, Jain RK, Constr. Build. Mater., 5, 208 (1991)
  2. Chew MYL, Zhou X, Tay YM, Polym. Test, 20, 87 (2001)
  3. Tang YW, Santerre JP, Labow RS, Taylor DG, J. Appl. Polym. Sci., 62(8), 1133 (1996)
  4. Tonelli C, Trombetta T, Scicchitano M, Castiglioni G, J. Appl. Polym. Sci., 57(9), 1031 (1995)
  5. Boxhammer J, Polym. Test, 20, 719 (2001)
  6. Noh MH, Lee DC, J. Appl. Polym. Sci., 74(12), 2811 (1999)
  7. Krishnamoorti R, Vaia RA, Polymer Nanocomposites, ACS symposium series 804, American Chemical Society, Washington, D C., p.7 (2002)
  8. Pandya MV, Deshpande DD, Hundiwale DG, J. Appl. Polym. Sci., 32, 4959 (1986)
  9. Aranda P, Ruiz-Hitzky E, Chem. Mater., 4, 1395 (1992)
  10. Maiti P, Batt CA, Giannelis EP, Polym. Mater. Sci. Eng., 88, 58 (2003)
  11. Alexandre M, Dubois D, Mater. Sci. Eng., 28, 1 (2000)
  12. Chen TK, Tien YI, Wei KH, Polymer, 41(4), 1345 (2000)
  13. Reegen SL, J. Appl. Polym. Sci., 10, 1247 (1966)
  14. David DJ, Staley HB, Analytical Chemistry of Polyurethane, Wiley-Interscience, New York (1969)
  15. Hernandez-Paron G, Lima RM, Nava R, Garcia-Garduno MV, Castano VM, Adv. Polym. Technol., 21, 116 (2002)
  16. Gilman JW, Jackson CL, Morgan AB, Harris RH, Chem. Mater., 12, 1866 (2002)
  17. An YU, Chang JH, Park YH, Park JM, Polym.(Korea), 26(3), 381 (2002)
  18. Park SJ, Cho KS, Zaborski M, Slusarski L, Elastomer, 4, 258 (2002)