화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.5, 404-409, September, 2007
폴리우레탄 복합체의 무기난연재료 충전에 의한 난연 특성
Fire-Retardation Properties of Polyurethane Nanocomposite by Filling Inorganic Nano Flame Retardant
E-mail:
초록
본 연구에서는 무기계 나노 분말을 충전하여 난연성이 우수한 폴리우레탄 나노복합재료를 우레탄 반응에 의해 제조하였다. 또한 나노복합재료의 난연특성을 콘 칼로리미터 분석과 한계산소지수 시험으로 확인하였다. MMT-PU와 Bi2O3-PU 나노복합재료의 최대 열 방출속도는 모두 폴리우레탄 매트릭스보다 50% 감소하였으며, MMT/ Bi2O3-PU 복합재료의 난연 특성이 가장 우수하였다. 또한 한계산소지수도 충전제의 함량에 따라 감소하는 경향을 보였으며, 모두 20 이상이었다. 복합재료의 최대 열 방출속도는 폴리우레탄 매트릭스보다 모두 지연되었으며 최대 열 방출속도는 Bi2O3-PU, MMT-PU, MMT/Bi2O3-PU 순으로 각각 764, 707, 635 kW/m2 이었으며, MMT/Bi2O3-PU 복합재료의 난연성이 가장 우수하였다. 한편 폴리우레탄 나노복합재료의 연소시 충전제가 충전됨에 따라 CO2 생성량은 감소하였고 CO 생성량은 증가하였으며 이로부터 본 연구에서 제조한 복합재료의 난연성이 향상된 것을 확인하였다.
Polyurethane nanocomposites with inorganic nano fillers for the improvement thermal stability were prepared by the urethane reaction. Fire retardation properties of polyurethane nanocomposites were investigated by cone calorimeter and limited oxygen index (LOI). Maximum heat release rate of MMT-PU and Bi2O3-PU polyurethane nanocomposites were decreased as 50% than polyurethane matrix and fire retardation properties of MMT/Bi2O3-PU nanocomposte had the best improvement. The LOI of polyurethane nanocomposites also were improved as filling fillers in the nanocomposites over 20. The maximum heat release rates of MMT-PU, Bi2O3-PU and MMT/Bi2O3-PU polyurethane nanocomposites were 764, 707, 635 kW/m2, respectively and MMT/Bi2O3-PU polyurethane nanocomposite exhibited the highest value of fire-retardant. We confirmed that polyurethane nanocomposites improved the fire retardation properties.
  1. Theng BKG, Formation and Properties of clay-Polymer Composites, Developments in soil sciences, Elsevier, New York, Vol 9, p 362 (1979)
  2. Salmen L, Ruvo AD, Seferis JC, Stark EB, Materials Science Monographs, Elsevier, Amsterdam (1986)
  3. Bujdak J, Hackett E, Giannelis EP, Chem. Mater., 12, 2168 (2000)
  4. Park SJ, Seo DI, Nah C, J. Colloid Interface Sci., 251(1), 225 (2002)
  5. Park CS, Cheong WW, Rubber Technology, 1, 114 (2000)
  6. Choi SS, Im WB, Kim JH, Park YA, Woo JW, Elastomer, 37, 224 (2002)
  7. Kim SJ, Polym. Sci. Technol., 6, 118 (1995)
  8. Tewarson A, Flame Retardant Polymeric Materials, Plenum Press, New York (1982)
  9. Xiong J, Liu Y, Yang X, Wang X, Polym. Degrad. Stabil., 86, 549 (2004)
  10. Berta M, Lindsay C, Pans G, Camino G, Polym. Degrad. Stabil., 91, 1179 (2006)
  11. Song M, Xia HS, Yao KJ, Hourston DJ, Eur. J., 40, 1615 (2004)
  12. Helfen A, Merkourakis S, Wang G, Walls MG, Roy E, Yu-Zhang K, Leprince-Wang Y, Solid State Ion., 176(5-6), 629 (2005)
  13. Lu CH, Lee JT, Ceramics International, 24, 285 (1998)
  14. Reegen SL, J. Appl. Polym. Sci., 10, 1247 (1966)
  15. David DJ, Staley HB, Analytical Chemistry of Polyurethane, Wiley-Interscience, New York (1969)
  16. Goff LJ, Polym. Eng., 33, 497 (1993)
  17. Grand AF, Investigations of Fire Retarded Polymeric Systems., p.3076-3078, ANTEC '96
  18. Checchin M, Cecchini C, Cellarosi B, Sam FO, Polym. Degrad. Stabil., 64, 573 (1999)
  19. Cullis CF, Hirsschiler MM, Madden RG, Eur. Polym. J., 58, 493 (1992)
  20. Cusack PA, Heer MS, Monk AW, Polym. Degrad. Stabil., 58, 229 (1997)
  21. Chiu SH, Wang WK, Polymer, 39(10), 1951 (1998)
  22. Babrauskas V, Grayson SJ, Heat Release in Fires, Elservier Science Publishers, New York (1992)
  23. Song L, Hu Y, Tang Y, Zhang R, Chen Z, Fan W, Polym. Degrad. Stabil., 87, 111 (2005)
  24. Wen J, Wike GC, Chem. Mater., 8, 1667 (1996)
  25. Hernandez-Padron G, Lima RM, Nava R, Garcia-Garduno MV, Castano VM, Adv. Polym. Technol., 21(2), 116 (2002)