Korean Journal of Chemical Engineering, Vol.24, No.5, 723-729, September, 2007
Characterization of aquatic groundwater colloids by a laser-induced breakdown detection and ICP-MS combined with an asymmetric flow field-flow fractionation
E-mail:
This study investigated the characteristics of natural groundwater colloids by a laser-induced breakdown detection (LIBD) and inductively-coupled plasma mass spectrometry (ICP-MS) in a combination with an asymmetrical flow field-flow fractionation (AsymFFFF). The groundwater was sampled from a borehole in the Yuseong area of Daejeon, Korea at different geological depths from 30 to 460 m and its geochemical parameters were measured. The combination of AsymFFFF and LIBD revealed a heterogeneous size fraction with a relatively broad size distribution of the groundwater colloids. One of the size fractions of the groundwater colloids was about 20 nm up to smaller than 100 nm, and the other fractions were larger than 100 nm. The elemental composition of the groundwater colloids was also analyzed by the AsymFFFF coupled with an ICP-MS. Results from the ICP-MS coupled with the AsymFFFF provided us with information about the size-specific elemental composition. The smaller sized fractions mainly consisted of calcite colloids with strontium, whereas the larger fractions were comprised of colloids such as aluminosilicates and iron oxides. The observations of all the groundwater samples indicate a similar pattern for the colloid fractions in size and in element composition except in the concentration.
Keywords:Groundwater Colloids;Laser-induced Breakdown Detection (LIBD);Asymmetric Flow Field-Flow Fractionation (AysmFFFF);Inductively-Coupled Plasma Mass Spectrometry (ICP-MS)
- Atteia O, Perret D, Adatte T, Kozel R, Rossi P, Environ. Geol., 34, 257 (1998)
- Degueldre C, Triay I, Kim JI, Vilks P, Laaksharju M, Miekeley N, Appl. Geochem., 15, 1043 (2000)
- Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL, Nature, 397(6714), 56 (1999)
- Kim JI, Radiochim. Acta, 52/53, 71 (1991)
- McCarthy JF, Zachara JM, Environ. Sci. Technol., 23, 496 (1989)
- Vilks P, Miller H, Doern D, Appl. Geochem., 6, 553 (1991)
- Buffle J, Leppard GG, Environ. Sci. Technol., 29, 2169 (1995)
- Degueldre C, Baeyens B, Goerlich W, Riga J, Verbist J, Stadelman P, Geochim. Cosmochim. Acta, 53, 603 (1989)
- Lerman A, Carder KL, Betzer PR, Earth Planetary Sci. Lett., 37, 61 (1977)
- Plaschke M, Romer J, Klenze R, Kim JI, Colloids Surf. A: Physicochem. Eng. Asp., 160, 269 (1999)
- Filella M, Zhang J, Newman ME, Buffle J, Colloids Surf. A: Physicochem. Eng. Asp., 120, 27 (1997)
- Bundschuh T, Knopp R, Kim JI, Colloids Surf. A: Physicochem. Eng. Asp., 177, 47 (2001)
- Bundschuh T, Hauser W, Kim JI, Knopp R, Scherbaum F, Colloids Surf. A: Physicochem. Eng. Asp., 180, 285 (2001)
- Plaschke M, Schafer T, Bundschuh T, Mahn TN, Knopp R, Geckeis H, Kim JI, Anal. Chem., 73, 4338 (2001)
- Kitamori T, Yokose K, Suzuki K, Sawada T, Gohshi Y, Jpn. J. Appl. Phys., 27, 983 (1988)
- Scherbaum FJ, Knopp R, Kim JI, Appl. Phys. B-Lasers Opt., 63, 299 (1996)
- Bouby M, Geckeis H, Manh TN, Yun JI, Dardenne K, Schafer T, Walther C, Kim JI, J. Chromatogr. A, 1040, 97 (2004)
- Bouby M, Manh TN, Geckeis H, Scherbaum F, Kim JI, Radiochim. Acta, 90, 727 (2002)
- Manh TN, Knopp R, Geckeis H, Kim JI, Beck HP, Anal. Chem., 72, 1 (2002)
- Manh TN, Geckeis H, Kim JI, Beck HP, Colloids Surf. A: Physicochem. Eng. Asp., 181, 289 (2001)
- Prestel H, Schott L, Niessner R, Panne U, Water Res., 39, 3541 (2005)
- Schimpf ME, Pettys MP, Colloids Surf. A: Physicochem. Eng. Asp., 120, 87 (1997)
- Giddings JC, Science, 260, 1456 (1993)
- Geckeis H, Manh TN, Bouby M, Kim JI, Colloids Surf. A: Physicochem. Eng. Asp., 217, 101 (2003)
- Hasselov M, Lyven B, Haraldsson C, Sirinawin W, Anal. Chem., 71, 3497 (1999)
- Kim GY, Koh YK, Bae DS, Kim CS, J. Miner. Soc. Korea, 17, 99 (2004)