Macromolecular Research, Vol.15, No.6, 565-574, October, 2007
Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions
E-mail:
In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous -alumina tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/ -alumina tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a CO2/N2 selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.
Keywords:gas separation;polyimide;phenolic resin;polyacrylonitrile;cellulose acetate;pyrolized membrane
- Perez-Mendoza M, Et al, Carbon, 44, 638 (2006)
- Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211(2), 311 (2003)
- Suda H, Haraya K, Chem. Commun., 93 (1997)
- Saufi SM, Ismail AF, Carbon, 42, 241 (2004)
- Liang C, Sha G, Guo S, Carbon, 37, 1391 (1999)
- Park SH, Kim KJ, So WW, Moon SJ, Lee SB, Macromol. Res., 11(3), 157 (2003)
- Suda H, Haraya K, J. Phys. Chem. B, 101(20), 3988 (1997)
- Singh-Ghosal A, Koros WJ, J. Membr. Sci., 174(2), 177 (2000)
- Centeno TA, Fuertes AB, Sep. Purif. Technol., 25, 379 (2001)
- Centeno TA, Vilas JL, Fuertes AB, J. Membr. Sci., 228(1), 45 (2004)
- Ismail AF, David LIB, J. Membr. Sci., 193(1), 1 (2001)
- Zhou WL, Yoshino M, Kita H, Okamoto K, J. Membr. Sci., 217(1-2), 55 (2003)
- Kim YK, Park HB, Lee YM, J. Membr. Sci., 251(1-2), 159 (2005)
- Kim YK, Park HB, Lee YM, J. Membr. Sci., 226(1-2), 145 (2003)
- D.o.B.-R.L. Sadtler Research Laboratories The Infrared Spectra Atlas of Monomers and Polymers (1984)
- Mariwala RK, Foley HC, Ind. Eng. Chem. Res., 33(3), 607 (1994)
- David LIB, Ismail AF, J. Membr. Sci., 213(1-2), 285 (2003)
- Jeong HM, Choi MY, Ahn YT, Macromol. Res., 14(3), 312 (2006)
- Grzyb B, Et al, J. Anal. Appl. Pyrolysis, 67, 77 (2003)
- Kim DS, Park HB, Lee CH, Lee YM, Moon GY, Nam SY, Hwang HS, Yun TI, Rhim JW, Macromol. Res., 13(4), 314 (2005)
- Sedigh MG, Xu LF, Tsotsis TT, Sahimi M, Ind. Eng. Chem. Res., 38(9), 3367 (1999)
- Zhang X, Et al, Sep. Purif. Technol., 52, 261 (2006)
- Kim DK, Park SH, Kim BC, Chin BD, Jo SM, Kim DY, Macromol. Res., 13(6), 521 (2005)
- Barrett EP, Joyner LG, Halenda PP, J. Am. Chem. Soc., 73, 373 (1951)
- Mochida I, Kawano S, Ind. Eng. Chem. Res., 30, 2322 (1991)
- Wu JCS, Flowers DF, Liu PKT, J. Membr. Sci., 77, 85 (1993)
- Gilron J, Soffer A, J. Membr. Sci., 209(2), 339 (2002)
- Hayashi J, Yamamoto M, Kusakabe K, Morooka S, Ind. Eng. Chem. Res., 34(12), 4364 (1995)
- Hayashi J, Mizuta H, Yamamoto M, Kusakabe K, Morooka S, Suh SH, Ind. Eng. Chem. Res., 35(11), 4176 (1996)
- Yamamoto M, Kusakabe K, Hayashi J, Morooka S, J. Membr. Sci., 133(2), 195 (1997)
- Lapkin A, Membr. Tech., 116, 5 (1999)
- Wei W, Et al, Carbon, 40, 465 (2002)
- Zhou WL, Yoshino M, Kita H, Okamoto K, Ind. Eng. Chem. Res., 40(22), 4801 (2001)