화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.45, No.5, 415-423, October, 2007
광화학적 수소제조를 위한 나노복합 광촉매의 설계
Design of Nanocomposite Photocatalysts for Solar Hydrogen Production
E-mail:
초록
광촉매에 의한 수소제조는 재생 가능한 물과 태양에너지로부터 직접적으로 수소에너지를 생산할 수 있는 가장 유망한 기술이다. 지난 수십 년간의 연구에도 불구하고, 고효율과 내구성을 가지는 새로운 가시광 광촉매 소재를 개발하는 것에는 여전히 많은 기술적인 과제가 남아있다. 본 총설에서는 광화학적 수소제조를 위한 새로운 광촉매 소재 개발에 있어서 나노복합 소재의 적용에 대하여 논의하고자 한다. 잘 알려진 소재와 기능의 합리적인 조합과 변형은 가시광 조사 하에 높은 광활성을 가지는 우수한 광촉매를 얻기 위한 효과적인 방법이다.
Photocatalytic water splitting (PWS) is the most promising technology to produce H2 energy directly from renewable water and solar light. In spite of the remarkable progress made in the last decade, there are still many technical challenges remaining particularly in finding new photocatalytic materials with high efficiency and durability. This article discusses the application of nanocomposite materials in search of new photocatalytic materials for solar hydrogen production from water. It has been demonstrated that smart combination and modification of known materials and functions could be fruitful approach for the purpose.
  1. Fujishima A, Honda K, Nature, 238(5358), 37 (1972)
  2. Domen K, Kudo A, Onishi T, J. Catal., 102(1), 92 (1986)
  3. Inoue Y, Asai Y, Sato K, J. Chem. Soc.-Faraday Trans., 90(5), 797 (1994)
  4. Kudo A, Kato H, Chem. Lett., 20(9), 867 (1997)
  5. Sakata T, in Serpone, N. and Pelizzetti, E.(Ed.), Photocatalysis: Fundamentals and Applications, Wiley, New York (1989)
  6. Naman SA, Ahwi SM, Al-Emara K, J. Hydrol. Eng., 11(1), 33 (1986)
  7. Tambwekar SV, Subrahmanyam M, J. Hydrol. Eng., 22(10-11), 959 (1997)
  8. Jang JS, Li W, Oh SH, Lee JS, Chem. Phys. Lett., 425(4-6), 278 (2006)
  9. Koca M, Sahin M, Int. J. Hydrog. Energy, 27(4), 363 (2002)
  10. Wu J, Lin JM, Shu YB, Sato T, J. Mater. Chem., 11(12), 3343 (2001)
  11. Frank AJ, Honda K, J. Phys. Chem., 86(11), 1933 (1982)
  12. Lee JS, Catal. Survey from Asia, 9(4), 217 (2004)
  13. Abe R, Sayama K, Sugihara H, J. Phys. Chem. B, 109(33), 16052 (2005)
  14. Abe R, Sayama K, Domen K, Arakawa H, Chem. Phys. Lett., 344(3-4), 339 (2001)
  15. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H, Chem. Commun.(23), 2419 (2001)
  16. Wu J, Uchida S, Fujishiro Y, Yin S, Sata T, Int. J. Inorg. Mater., 1(3-4), 253 (1999)
  17. Jang JS, Kim HG, Reddy VR, Bae SW, Ji SM, Lee JS, J. Catal., 231(1), 213 (2005)
  18. Barbeni, M., Pelizzetti E, Borgarello E, Serpone N, Graetzel M, Balducci L, Visca M, Int. J. Hydrog. Energy, 10(4), 249 (1985)
  19. Nojik AJ, Appl. Phys. Lett., 29(3), 150 (1976)
  20. Khaselev O, Turner JA, Science, 280(5362), 425 (1998)
  21. Kim HG, Hwang DW, Lee JS, J. Am. Chem. Soc., 126(29), 8912 (2004)
  22. Matsumoto Y, J. Solid State Chem., 126(2), 227 (1996)
  23. Kim HG, Borse PH, Choi W, Lee JS, Angew. Chem.-Int. Edit., 44(29), 4585 (2005)
  24. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293(5528), 269 (2001)
  25. Kim HG, Jeong ED, Borse PH, Jeon S, Yong K, Lee JS, Li W, Oh SH, Appl. Phys. Lett., 064103/01-03, 89(6) (2006)
  26. Hwang DW, Kim J, Park TJ, Lee JS, Catal. Lett., 80(1-2), 53 (2002)
  27. Kojima I, Kurahashi M, J. Electron Spectrosc. Relat. Phenom., 42(2), 177 (1987)
  28. White JR, Bard AJ, J. Phys. Chem., 89(10), 1947 (1985)
  29. Roy AM, De GC, Sasmal N, Bhattacharyya SS, Int. J. Hydrog. Energy, 20(8), 627 (1995)
  30. Linkous CA, Muradov NZ, Ramser SN, Int. J. Hydrog. Energy, 20(9), 701 (1995)
  31. Jang JS, Choi SH, Park H, Choi W, Lee JS, J. Nanosci. Nanotechnol., 6(11), 3642 (2006)
  32. Zou Z, Ye J, Sayama K, Arakawa H, Nature, 414(6864), 625 (2001)
  33. Kato H, Kudo A, J. Phys. Chem. B, 106(19), 5029 (2002)
  34. Hwang DW, Kirn HG, Lee JS, Kim J, Li W, Oh SH, J. Phys. Chem. B, 109(6), 2093 (2005)
  35. Jang JS, Ji SM, Bae SW, Son HC, Lee JS, J. Photochem. Photobiol. A-Chem., 188(1), 112 (2007)
  36. Jang JS, Choi SH, Shin N, Yu C, Lee JS, J. Solid State Chem., 180(3), 1110 (2007)
  37. Jang JS, Hwang DW, Lee JS, Catal. Today, 120(2), 174 (2007)