Chemical Engineering Science, Vol.62, No.6, 1670-1681, 2007
Modeling of drag with the Eulerian approach and EMMS theory for heterogeneous dense gas-solid two-phase flow
Combined with the Eulerian approach, energy minimization multi-scale (EMMS) theory was used to develop a new theoretical model for the drag between the gas and solid phases in dense fluidized systems. The energy minimization was used in the solution procedure as an additional stability condition to close the conservation equations. The model was derived without introducing any empirical factors, so it can be used for more flow conditions in circulating fluidized beds (CFBs) than empirical models, especially for heterogeneous gas-solid two-phase flows that include cluster formation. Non-uniform particle distribution in computational cells, which is usually not described by the differential equations, is also considered in the new drag model. Both the drag values given by the model and simulation results for real systems agree well with experimental data. The results show that the model reasonably describes the interactions between the gas and particle phases in dense flows. (c) 2005 Elsevier Ltd. All rights reserved.