Electrochimica Acta, Vol.52, No.11, 3588-3600, 2007
The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid - Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies
The effect of succinic acid (SA) on the corrosion inhibition of a low carbon steel (LCS) electrode has been investigated in aerated non-stirred 1.0 M HCl solutions in the pH range (2-8) at 25 degrees C. Weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behaviour in the absence and presence of different concentrations of SA under the influence of various experimental conditions. Measurements of open circuit potential (OCP) as a function of time till steady-state potentials (E-st) were also established. Surface analysis using energy dispersive X-ray (EDX) and scanning electron microscope (SEM) allowed us to clarify the mechanistic aspects and evaluate the relative inhibition efficiency. Results obtained showed that SA is a good "green" inhibitor for LCS in HCl solutions. The polarization curves showed that SA behaves mainly as an anodic-type inhibitor. EDX and SEM observations of the electrode surface confirmed existence of a protective adsorbed film of the inhibitor on the electrode surface. The inhibition efficiency increases with increase in SA concentration, pH of solution and time of immersion. Maximum inhibition efficiency (approximate to 97.5%) is obtained at SA concentrations > 0.01 M at pH 8. The effect of SA concentration and pH on the potential of zero charge (PZC) of the LCS electrode in 1.0 M HCl solutions has been studied and the mechanism of adsorption is discussed. Results obtained from weight loss, polarization and impedance measurements are in good agreements. (c) 2006 Published by Elsevier Ltd.
Keywords:low carbon steel;HCl solution;corrosion inhibition;succinic acid;impedance;potential of zero charge