Electrochimica Acta, Vol.52, No.11, 3651-3653, 2007
Synthesis of nano Sb-encapsulated pyrolytic polyacrylonitrile composite for anode material in lithium secondary batteries
A novel process was proposed to synthesize nano Sb-encapsulated pyrolytic polyacrylonitrile composite for anode material in lithium secondary batteries. The preparation started with the dissolution of SbCl3 and polyacrylonitrile (PAN) in dimethylformamide (DMF) solution, followed by the addition of KBH4 to reduce Sb3+ in the solution. The Sb composite was obtained by pyrolysis of the Sb/PAN mixture that precipitated out when the DMF solution was added by plentiful water. The TEM analysis showed that about 100-200 nm Sb particles were embedded by the pyrolyzed PAN, which provided a conductive matrix to relieve the morphological change of Sb during electrochemical cycling. As-prepared composite presented good cycleability for lithium storage. The proposed process paves an effective way to prepare high performance alloy based composite anode materials for high performance lithium-ion batteries. (c) 2006 Elsevier Ltd. All rights reserved.