Langmuir, Vol.23, No.8, 4351-4357, 2007
Synergistic effects of polymers and surfactants on depletion forces
This work investigates the synergistic effects of a neutral polymer and an anionic surfactant on depletion forces as a function of bulk polymer and bulk surfactant concentration. In this work, we measure the force between a silica particle and a silica plate in aqueous solutions of the polymer and the surfactant using atomic force microscopy. The polymer is the triblock copolymer poly(ethylene oxide-block-propylene oxide-block-ethylene oxide) (Pluronic F108), and the surfactant is sodium dodecyl sulfate (SDS). In F108-only solutions, the force between the silica particle and the silica plate is primarily repulsive for polymer concentrations ranging from 200 to 10 000 ppm. In SDS-only solutions, the net force between the silica surfaces is repulsive at all separations for concentrations below 16 mM SDS and is attractive with a structural force character above 16 mM SDS. When both F108 and SDS are present in the solution, a net attractive force is observed at SDS concentrations as low as 4 mM, a factor of 2 below the critical micelle concentration (cmc). We attribute this synergistic effect to the complexation of F108 with SDS in bulk solution at a critical aggregation concentration (cac) that is less than the cmc, producing a relatively large, charged complex that creates a significant depletion force between the particle and plate.