화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.18, 3633-3641, 2007
Theoretical study on the second hyperpolarizabilities of phenalenyl radical systems involving acetylene and vinylene linkers: Diradical character and spin multiplicity dependences
We have investigated the static second hyperpolarizabilities (gamma) of the singlet diradical systems with intermediate diradical character involving phenalenyl radicals connected by acetylene and vinylene pi-conjugated linkers, 1 and 2, using the hybrid density functional theory. For comparison, we have also examined the gamma values of the closed-shell and pure diradical systems with almost the same molecular size as 1 and 2. In agreement with our previous prediction of the diradical character dependence of gamma, it turns out that the gamma values of 1 and 2 are significantly enhanced compared to those of the closed-shell and pure diradical systems. In the present case, distinct differences in gamma values are not observed between the two pi-conjugated linkers, though the diradical character is found to depend on the kind of linker. Furthermore, we have investigated the spin multiplicity effect on gamma. Changing from the singlet to the triplet state, the gamma values of the systems with intermediate diradical character in the singlet state are quite reduced, though those of the pure diradical systems are hardly changed. Such spin multiplicity dependence of gamma is understood by considering the difference of diradical character between their singlet states together with the Pauli principle. The present results provide a possibility of a novel control scheme of gamma for phenalenyl radical systems involving pi-conjugated linkers by adjusting the diradical character through the change of the linked position of pi-conjugated linkers and the spin multiplicity.