Journal of Physical Chemistry A, Vol.111, No.19, 4056-4061, 2007
Ab intio based potential energy surfaces and Franck-Condon analysis of ionization thresholds of cyclic-C3H and linear-C3H
We report a Franck-Condon analysis in reduced dimensionality of the ionization thresholds of linear(l)-C3H and cyclic(c)-C3H using MP2-based potential energy surfaces and CCSD(T)/aug-cc-pVTZ calculations of electronic energies at selected geometries. The potential energy surfaces are fits to tens of thousands of MP2/aug-cc-pVTZ energies for the neutral and cation systems. These fits properly describe the invariance of the potential with respect to all permutations of the three C atoms. The realism of the potential surfaces is assessed by comparing stationary-point structures, energies, and normal-mode frequencies with previous high-level ab initio calculations. Several key vibrational modes in this ionization process are located at saddle points and so a numerical approach to obtain the Franck-Condon factors for those modes is done. On the basis of this analysis combined with a simple harmonic treatment of the energies of the remaining modes and key electronic energy differences obtained with CCSD(T)/aug-cc-pVTZ calculations, we find the threshold ionization energy of l-C3H to be 9.06 eV and for c-C3H we estimate the threshold to be in the range 9.70-9.76 eV. We estimate these values are accurate to within +/- 0.05 eV.