Journal of Physical Chemistry B, Vol.111, No.19, 5090-5100, 2007
Solvent-driven multiply configurable on/off fluorescent indicator of the pH window: A diethylenetriamine bearing two end pyrene fragments
Fluorescence behaviors of a simple-structured molecule (L), a diethylenetriamine bearing two end pyrene fragments, have been investigated in water. Effects of adding a less-polar organic solvent (acetonitrile: MeCN) on the emission behaviors have been studied by means of steady-state and time-resolved fluorescence measurements. L dissolved in water shows dual-mode fluorescence consisting of monomer and excimer emissions. The monomer emission shows an "on-off" intensity profile against the pH window (pH 2-12), whereas the excimer emission shows an "off-on" profile. Upon MeCN addition, the monomer emission maintains the "on-off" profile. In contrast, the "off-on" profile of the excimer emission is drastically changed: L shows two more types of profiles, "off-on-off-on" and "off-on-off", along with the MeCN concentration increase, thus behaving as a multiply configurable fluorescent indicator of the pH window. The MeCN-driven excimer emission switching of L is triggered by (i) the decrease in stability of the intramolecular ground-state dimer (GSD) formed between the end pyrene fragments, which suppresses the direct photoexcitation of GSD (suppression of the "static" excimer formation), leading to a decrease in the excimer emission intensity at basic pH; and (ii) the decrease in polarity of solution, which allows formation of a "dynamic" excimer via a monomer-to-excimer transition, resulting in an enhancement of the excimer emission intensity at acidic-neutral pH.