Journal of Physical Chemistry B, Vol.111, No.19, 5386-5395, 2007
Determination of redox potentials for the Watson-Crick base pairs, DNA nucleosides, and relevant nucleoside analogues
Redox potentials for the DNA nucleobases and nucleosides, various relevant nucleoside analogues, Watson-Crick base pairs, and seven organic dyes are presented based on DFT/B3LYP/6-31++G(d,p) and B3YLP/6-311+G(2df,p)//B3LYP/6-31+G* levels of calculations. The values are determined from an experimentally calibrated set of equations that correlate the vertical ionization (electron affinity) energy of 20 organic molecules with their experimental reversible oxidation (reduction) potential. Our results are in good agreement with those estimated experimentally for the DNA nucleosides in acetonitrile solutions (Seidel et al. J. Phys. Chem. 1996, 100, 5541). We have found that nucleosides with anti conformation exhibit lower oxidation potentials than the corresponding syn conformers. The lowering in the oxidation potential is due to the formation of an intramolecular hydrogen bonding interaction between the 5'-OH group of the sugar and the N(3) of the purine bases or C(2)O of the pyrimidine bases in the syn conformation. Pairing of adenine or guanine with its complementary pyrimidine base decreases its oxidation potential by 0.15 or 0.28 V, respectively. The calculated energy difference between the oxidation potential for the G center dot C base pair and that of the guanine base is in good agreement with the experimental value estimated recently (0.34 V: Caruso, T.; et al. J. Am. Chem. Soc. 2005, 127, 15040). The complete and consistent set of reversible redox values determined in this work for the DNA constituents is expected to be of considerable value to those studying charge and electronic energy transfer in DNA.