화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.19, 5418-5424, 2007
Interaction of guanine, its anions, and radicals with lysine in different charge states
Modification in DNA or protein structure can severely affect DNA-protein interactions and the functioning of biological systems. Some new insights into radiation-induced effects of guanine-lysine interactions have been obtained here by theoretical investigations. Geometries of zwitterionic and non-zwitterionic lysine in different charge states (neutral, radical cation, and protonated cation) were optimized employing the B3LYP/6-31G** and B3LYP/AUG-cc-pVDZ levels of hybrid density functional theory (DFT) and using the second-order Moller-Plesset perturbation theory along with the 6-31G** basis set. In the case of neutral lysine in the gas phase, no zwitterionic structure was obtained. The non-zwitterionic structures of lysine in radical and protonated cationic forms are appreciably more stable than the corresponding zwitterionic structures in the gas phase as obtained at all levels of theory employed here. Binding of guanine and different dehydrogenated guanine radicals with lysine in different charge states was studied at the B3LYP/6-31G** level of DFT. When guanine makes a complex with the lysine radical cation, large amounts of spin and positive charge densities are transferred from the lysine radical cation to guanine and the guanine is thus converted from its normal form to the radical cationic form. Complexation of the lysine radical cation with the H1-hydrogen-abstracted guanine radical leads to CO2 liberation and proton transfer from lysine. These results are compared with the available experimental ones.