Journal of the American Chemical Society, Vol.129, No.16, 5102-5107, 2007
Substrate flexibility of vicenisaminyltransferase VinC involved in the biosynthesis of vicenistatin
A glycosyltransferase VinC is involved in the biosynthesis of antitumor beta-glycoside antibiotic vicenistatin. It catalyzes a glycosyl transfer reaction between dTDP-alpha-D-vicenisamine and vicenilactam. Previous identification of its broad substrate specificity toward various glycosyl acceptors enabled us to explore the potential of VinC for glycodiversification. In vitro study of the substrate specificity toward several dTDP-sugars with vicenilactam established that VinC displayed activities with alpha-anomers of several dTDP-2-deoxy-D-sugars such as mycarose, digitoxose, olivose, and 2-deoxyglucose to afford respective beta-glycosides. Notably, beta-anomers of dTDP-2-deoxy-D-sugars also appeared to be accepted by VinC to form alpha-glycosides. Furthermore, VinC is capable of catalyzing glycosyl transfer reactions from both the alpha-anomer and beta-anomer of dTDP-L-mycarose, respectively, into beta-glycoside and alpha-glycoside. These results indicate that VinC is a unique glycosyltransferase possessing broad substrate specificity. The mechanism of this axially oriented glycosidic bond formation from the equatorially oriented dTDP-sugar might be explained by conformational change of dTDP-sugar to a boat conformation during the glycosyl transfer reaction. To apply these features of VinC for glycodiversification, 22 sets of structurally diverse glycosides were constructed using unnatural glycosyl donors and acceptors.