화학공학소재연구정보센터
Electrochimica Acta, Vol.52, No.18, 5565-5573, 2007
Electro-oxidation of methanol on Pt-Rh alloys
Methanol adsorption and electro-oxidation on Pt-Rh alloys have been studied in aqueous 0.5 M H2SO4 for a broad range of alloy surface composition including the pure Pt and Rh metals. Adsorption results have been compared with equivalent data obtained for CO and CO2 adsorption on these alloys. Current densities of continuous methanol oxidation on Pt, Rh and a Pt-Rh alloy with optimum surface molar fraction of Rh have been measured. Although on the pure Pt and Rh metals the methanol adsorption products exhibit similar energetic stability, as judged from the peak potential of electro-desorption, on the Pt-Rh alloys, there is a lowering of the stability. Similar behavior is observed for the CO and CO2 adsorption products, however, the lowering for methanol is much less than for CO and CO2. In the case of methanol, the maximum lowering is obtained for a surface molar fraction of Rh equal to ca. 0.65 and it is the same alloy surface composition that results in maximum lowering of the stability of the CO2 adsorption products, but not of the CO adsorption products (optimal fraction of Rh equal ca. 0.10). Structural similarity of the methanol and the CO, adsorption products finds support in similar values of the electrons-per-site parameter obtained. Pt-Rh alloys show insufficient electrode potential improvement over Pt in continuous methanol electro-oxidation due to the susceptibility of Rh to strong poisoning by the methanol adsorption products, which switches off the bi-functional mechanism of methanol electro-oxidation on this alloy. The presence of Rh in the alloy with Pt additionally strongly lowers the methanol electro-oxidation turnover rate of the Pt component. (c) 2006 Elsevier Ltd. All rights reserved.