Langmuir, Vol.23, No.11, 5942-5952, 2007
Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 1. Conventional (pH-insensitive) surfactants
A molecular-thermodynamic (MT) theory was developed to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. The theory was validated by comparing predicted and experimental cmc's of ternary surfactant mixtures, yielding results that were comparable to, and sometimes better than, the cmc's determined using regular solution theory. The theory was also used to model a commercial nonionic surfactant (Genapol UD-079), which was modeled as a mixture of 16 surfactant components. The predicted cmc agreed well with the experimental cmc, and the monomer concentration was predicted to increase significantly above the cmc. In addition, the monomer and the micelle compositions were predicted to vary significantly with surfactant concentration. These composition variations were rationalized in terms of competing steric and entropic effects and a micelle shape transition near the cmc. To understand the packing constraints imposed on ternary surfactant mixtures better, the maximum micelle radius was also examined theoretically. The MT theory presented here represents the first molecular-based theory of the micellization behavior of mixtures of three or more conventional surfactants. In article 2 of this series, the MT theory will be extended to model the micellization of mixtures of conventional and pH-sensitive surfactants.