화학공학소재연구정보센터
Langmuir, Vol.23, No.11, 6033-6041, 2007
Template-derived mesoporous carbons with highly dispersed transition metals as media for the reactive adsorption of dibenzothiophene
Mesoporous carbons with highly dispersed copper, cobalt, and iron were obtained from an organic polymer within amorphous silica powder, alumina, and zeolite 13X. The materials were characterized using the adsorption of nitrogen, potentiometric titration, and elemental analysis. The small metal content (less than 1%) and its chelation in the precursor polymers ensure a high dispersion of metallic centers. The materials obtained are mainly mesoporous but differ significantly in their porosity and surface chemistry, which is linked to the effect of template constraints and chemistry and the kind of metal and is related to the differences in the carbonization mechanism. On the carbon obtained, the adsorption of dibenzothiophene (DBT) from hexane was carried out. The high capacities (up to 130 mg S/g) obtained were linked to the high volume of mesopores and specific interactions of DBT with surface acidic groups and strong interactions of metals with dibenzothiophene via S-M sigma bonds or, in the case of copper, via interaction of metals with disturbed pi electrons of aromatic rings of DBT.