Langmuir, Vol.23, No.11, 6431-6437, 2007
Examining the accuracy of ideal adsorbed solution theory without curve-fitting using transition matrix Monte Carlo simulations
Ideal adsorbed solution theory (IAST) is a well-known approach to predicting multicomponent adsorption isotherms in microporous materials from experimental or simulation data for single-component adsorption. A limitation in practical applications of IAST is that useful calculations often require extrapolation of fitted single-component isotherms beyond the range for which data are available. We introduce a molecular simulation approach in which the intrinsic accuracy of IAST can be examined in a context that avoids any need to perform curve fitting with single-component data. Our approach is based on using transition matrix Monte Carlo to define single-component adsorption isotherms for arbitrary bulk-phase pressures from a single simulation. We apply our approach to several light gas mixtures in silica zeolites and a carbon nanotube to examine the intrinsic accuracy of IAST for these model systems.