화학공학소재연구정보센터
Journal of Structural Biology, Vol.122, No.1-2, 139-148, 1998
Changes in interfilament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas fibers
The modulatory effect of myosin regulatory light chain phosphorylation in mammalian skeletal muscle, first documented as posttetanic potentiation of twitch tension, was subsequently shown to enhance the expression and development of tension at submaximal levels of activating calcium. Structural analyses demonstrated that thick filaments with phosphorylated myosin regulatory light chains appeared disordered: they lost the near-helical, periodic arrangement of myosin head characteristic of the relaxed state, We suggested that disordered heads may be more mobile than ordered heads and are likely to spend more time close to their binding sites on thin filaments. In this study we determined that the physiological effects of phosphorylation could be mimicked by decreasing the lattice spacing between the thick and the thin filaments, either by osmotic compression with dextran or by increasing the sarcomere length of permeabilized rabbit psoas fibers, Phosphorylation of regulatory light chains by incubation of permeabilized fibers with myosin light chain kinase and calmodulin, followed by low levels of activating calcium, potentiated tension development at resting or lower sarcomere lengths in the absence of dextran but had no additional effect on tension potentiation or development in fibers with decreased lattice spacing due to either osmotic compression or increased sarcomere length.