Journal of Structural Biology, Vol.141, No.2, 122-131, 2003
Detergent organisation in crystals of monomeric outer membrane phospholipase A
The structure of the detergent in crystals of outer membrane phospholipase A (OMPLA) has been determined using neutron diffraction contrast variation. Large crystals were soaked in stabilising solutions, each containing a different H2O/D2O contrast. From the neutron diffraction at five contrasts, the 12 Angstrom resolution structure of the detergent micelle around the protein molecule was determined. The hydrophobic beta-barrel surfaces of the protein molecules are covered by rings of detergent. These detergent belts are fused to neighbouring detergent rings forming a continuous three-dimensional network throughout the crystal. The thickness of the detergent layer around the protein varies from 7-20 Angstrom. The enzyme's active site is positioned just outside the hydrophobic detergent zone and is thus in a proper location to catalyse the hydrolysis of phospholipids in a natural membrane. Although the dimerisation face of OMPLA is covered with detergent, the detergent density is weak near the exposed polar patch, suggesting that burying this patch in the enzyme's dimer interface may be energetically favourable. Furthermore, these results indicate a crucial role for detergent coalescence during crystal formation and contribute to the understanding of membrane protein crystallisation. (C) 2002 Elsevier Science (USA). All rights reserved.
Keywords:contrast variation;crystallisation;detergent structure;membrane proteins;neutron diffraction;outer membrane phospholipase