Journal of Structural Biology, Vol.155, No.3, 482-492, 2006
Crystal structure of the temperature-sensitive and allosteric-defective chaperonin GroEL(E461K)
The chaperonin GroEL adopts a double-ring structure with various modes of allosteric communication. The simultaneous positive intra-ring and negative inter-ring co-operativities alternate the functionality of the folding cavities in both protein rings. Negative interring co-operativity is maintained through different inter-ring interactions, including a salt bridge involving Glu 461. Replacement of this residue by Lys modifies the temperature sensitivity of the substrate-folding activity of this protein, most likely as a result of the loss of inter-ring co-operativity. The crystal structure of the mutant chaperonin GroEL(E461K) has been determined at 3.3 angstrom and compared with other structures: the wild-type GroEL, an allosteric defective GroEL double mutant and the GroEL-GroES-(ADP)(7) complex. The interring region of the mutant exhibits the following characteristics: (i) no salt-bridge stabilizes the inter-ring interface,- (ii) the mutated residue plays a central role in defining the relative ring rotation (of about 22 degrees) around the 7-fold axis; (iii) an increase in the inter-ring distance and solvent accessibility of the inter-ring interface; and (iv) a 2-fold reduction in the stabilization energy of the inter-ring interface, due to the modification of inter-ring interactions. These characteristics explain how the thermal sensitivity of the protein's fundamental properties permits GroEL to distinguish physiological (37 degrees C) from stress (42 degrees C) temperatures. (c) 2006 Elsevier Inc. All rights reserved.