Journal of the American Chemical Society, Vol.129, No.22, 7175-7184, 2007
Anion chelation by amido acid functionalized fused quartz/water interfaces studied by nonlinear optics
We report resonantly enhanced surface second harmonic generation (SHG) measurements to track the interaction of the EPA priority toxic metal pollutant chromium(VI) with fused quartz/water interfaces containing tailor-made amino acids that serve as model systems for environmental and biological interfaces. chi((3)) measurements of amido acid functionalized fused quartz/water interfaces are consistent with two acid-base equilibria, suggesting the formation of a laterally hydrogen-bonded environment similar to what is observed for aliphatic carboxylic acids. Chromate adsorption isotherms recorded at pH 7 are suggestive of an intramolecular chelation mechanism that becomes important when four or more hydrogen-bonding moieties are displayed toward the incoming chromate. The strong binding affinities of the amido acid functionalized fused quartz/water interfaces toward chromate are consistent with nearly 50% slower transport rates with respect to free-flowing groundwater, indicating that, in the absence of redox processes, peptide materials in heterogeneous geochemical environments can significantly increase chromate residence times. The strong evidence for synergistic effects dominating the interactions of chromate with surface-bound amido acids indicates that chemical complexity can be systematically addressed using tailor-made organic surfaces and interfaces.