화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.129, No.24, 7596-7610, 2007
Transition metal-carbon complexes. A theoretical study
The equilibrium geometries and bond dissociation energies of 16VE and 18VE complexes of ruthenium and iron with a naked carbon ligand are reported using density functional theory at the BP86/TZ2P level. Bond energies were also calculated at CCSD(T) using TZ2P quality basis sets. The calculations of [Cl-2(PMe3)(2)Ru(C)] (1Ru), [Cl-2(PMe3)(2)Fe(C)] (1Fe), [(CO)(2)(PMe3)(2)Ru(C)] (2Ru), [(CO)(2)(PMe3)(2)Fe(C)] (2Fe), [(CO)(4)Ru(C)] (3Ru), and [(CO)(4)Fe(C)] (3Fe) show that 1Ru has a very strong Ru-C bond which is stronger than the Fe-C bond in 1Fe. The metal-carbon bonds in the 18VE complexes 2Ru-3Fe are weaker than those in the 16VE species. Calculations of the related carbonyl complexes [(PMe3)(2)Cl2Ru(CO)] (4Ru), [(PMe3)(2)Cl2Fe(CO)] (4Fe), [(PMe3)(2)Ru(CO)(3)] (5Ru), [(PMe3)(2)Fe(CO)(3)] (5Fe), [Ru(CO)(5)] (6Ru), and [Fe(CO)(5)] (6Fe) show that the metal-CO bonds are much weaker than the metal-C bonds. The 18VE iron complexes have a larger BDE than the 18VE ruthenium complexes, while the opposite trend is calculated for the 16VE compounds. Charge and energy decomposition analyses (EDA) have been carried out for the calculated compounds. The Ru-C and Fe-C bonds in 1Ru and 1Fe are best described in terms of two electron-sharing bonds with sigma and pi symmetry and one donor-acceptor pi bond. The bonding situation in the 18 VE complexes 2Ru-3Fe is better described in terms of closed shell donor-acceptor interactions in accordance with the Dewar-Chatt-Duncanson model. The bonding analysis clearly shows that the 16VE carbon complexes 1Ru and 1Fe are much more strongly stabilized by metal-C sigma interactions than the 18VE complexes which is probably the reason why the substituted homologue of 1Ru could become isolated. The EDA calculations show that the nature of the TM-C and TM-CO binding interactions resembles each other. The absolute values for the energy terms which contribute to Delta E-int are much larger for the carbon complexes than for the carbonyl complexes, but the relative strengths of the energy terms are not very different from each other. The pi bonding contribution to the orbital interactions in the carbon complexes is always stronger than sigma bonding. There is no particular bonding component which is responsible for the reversal of the relative bond dissociation energies of the Ru and Fe complexes when one goes from the 16VE complexes to the 18VE species. That the 18 VE compounds have longer and weaker TM-C and TM-CO bonds than the respective 16 VE compounds holds for all complexes. This is because the LUMO in the 16 VE species is a sigma-antibonding orbital which becomes occupied in the 18 VE species.