화학공학소재연구정보센터
Chemical Physics Letters, Vol.345, No.5-6, 386-394, 2001
Energy transfer in nanostructured oligothiophene inclusion compounds
Resonant energy transfers from terthiophene (T3) to quinquethiophene (T5) oligomers embedded in the nanochannels of perhydrotriphenylene (PHTP) crystals are studied by cw and femtosecond spectroscopy. The stringent geometry imposed by the host results in a very peculiar supramolecular organization of the guest molecules consisting of parallel linear arrays of chromophores. This provides a unique opportunity to make a quantitative analysis of the energy transfer phenomena and in particular to distinguish between heterotransfers and homotransfers. The experimental data fitted by a suitable theoretical analysis indicate that homotransfers become important in the long time dynamics and that the heterotransfer rate is satisfactorily described by the analytical solution obtained by assuming a continuous intermolecular spacing.