- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.5, No.1, 44-52, February, 1981
Poly(r-Benzyl-L-glutamate-L-Leucine) 막의 투과특성과 혈액적합성
Permeability and Blood Compatibility of Copoly (r-benzyl- L-glutamate-L-leucine) Membrane
초록
Copoly(γ-benzyl-L-glutamate-L-leucine)막의 투수성, 분리성능, 막특성 및 혈액적합성을 검토하였다. Phosgene법으로 만든 γ-BLG NCA와 L-leucine NCA를 디옥산중에서 삼차아민인 triethylamine을 개시제로 하여 균일계로 중합시켰다. Copolypeptide의 디옥산 또는 벤젠용액을 유리판에 유연하여 막을 만들었다. 적외선스펙트럼으로부터 이 막의 콘포메이숀이 α-helix로 되어있는 것을 확인하였다. Copolypeptide막의 투수성과 용질분리성을 검토하기 위하여 batch식 투과장치를 사용하여 water flux를 측정한 결과, copolypeptide가 homopolypeptide인 PBLG막이나 poly-L-leucine막보다 water flux는 적었으나 용질배제율은 더 좋았다. Copolypeptide막의 혈액적합성을 알아보기 위하여 접촉각측정으로 임계표면장력이 20∼30dyne/㎝의 범위에 속하는 것이 항혈전성이 좋은 것을 알았다. 혈액응고시간은 Lee-White 법으로 측정하였다. L-leucine의 함량은 많은 copolypeptide가 γ-BLG가 많은 것보다 혈액적합성이 좋았다. 즉 소수성기가 많은 copolypeptide의 혈액적합성이 좋은 것을 알았다. 또 혈액응고시간은 표면장력의 한 성분으로서 수표결합의 영향을 받는 것을 알았다.
Permeation of water and various water soluble solute through copoly(γ-benzyl-L-glutamate-L-leucine) membranes was investigated. L-Leucine NCA and γ-BLG NCA synthesized by phosgenation of L-Leucine and BLG were polymerized homogeneously at 30℃ in dioxane using triethylamine as an initiator. Copolypeptide membranes were casted from dioxane or benzene solution on a glass plate. It was found that prepared membranes gave α-helical structure. The measurement of water permeability and solute separation of membranes were carried out by using a batch-type permeation apparatus. Water flux through copolypeptides was smaller than through homopolypeptides, but rejection by copolypeptides was greater than by homopolypetides''. The contact angle and clotting time of membranes were investigated in order to examine the thromboresistant property of copolypeptide membranes. Three components of the surface tension were estimated from the measurement of contact angle. The segment of L-leucine residue was found to be better blood compatible than the segment of γ-BLG residue in copolypeptides, and the clotting times were affected by surface tension and hydrogen bond in the copolypeptide units.