Journal of Hazardous Materials, Vol.106, No.2-3, 161-168, 2004
Recovery of isopropyl alcohol from waste solvent of a semiconductor plant
An important waste solvent generated in the semiconductor manufacturing process was characterized by high isopropyl alcohol (IPA) concentration over 65%, other organic pollutants and strong color. Because of these characteristics, IPA recovery was deemed as a logic choice for tackling this waste solvent. In the present work, an integrated method consisting of air stripping in conjunction with condensation and packed activated carbon fiber (ACF) adsorption for dealing with this waste solvent:. The air stripping with proper stripping temperature control was employed to remove IPA from the waste solvent and the IPA vapor in the gas mixture was condensed out in a side condenser. The residual IPA remaining in the gas mixture exiting the side condenser was efficiently removed in a packed ACF column. The air stripping with condensation was able to recover up to 93% of total IPA in the initial waste solvent. The residual IPA in the gas mixture, representing less than 3% of the initial IPA, was efficiently captured in the packed ACF column. Experimental tests were conducted to examine the performances of each unit and to identify the optimum operating conditions. Theoretical modeling of the experimental IPA breakthrough curves was also undertaken using a macroscopic model. The verified breakthrough model significantly facilitates the adsorption column design. The recovered IPA was found to be of high purity and could be considered for reuse. (C) 2003 Elsevier B.V. All rights reserved.
Keywords:isopropyl alcohol recovery;air stripping;condensation;activated carbon fiber;adsorption;breakthrough curves