Journal of Hazardous Materials, Vol.117, No.1, 65-73, 2005
Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk)
The study reports removal of heavy metals when present singly or in binary and ternary systems by the milling agrowaste of Cicer arientinum (chickpea var. black gram) as the biosorbent. The biosorbent removed heavy metal ions efficiently from aqueous solutions with the selectivity order of Pb > Cd > Zn > Cu > Ni. The biosorption of metal ions by black gram husk (BGH) increased as the initial metal concentration increased. Biosorption equilibrium was established within 30 min, which was well described by the Langmuir and Freundlich adsorption isotherms. The maximum amount of heavy metals (q(max)) adsorbed at equilibrium was 49.97, 39.99, 33.81, 25.73 and 19.56 mg/g BGH biomass for Pb, Cd, Zn, Cu and Ni, respectively. The biosorption capacities were found to be pH dependent and the maximum adsorption occurred at the solution pH 5. Efficiency of the biosorbent to remove Pb from binary and ternary solutions with Cd, Cu, Ni and Zn was the same level as it was when present singly. The presence of Pb in the binary and ternary solutions also did not significantly affect the sorption of other metals. Breakthrough curves for continuous removal of Pb from single, binary and ternary metal solutions are reported for inlet-effluent equilibrium. Complete desorption of Pb and other metals in single and multimetal solutions was achieved with 0.1 M HCl in both shake flask and fixed bed column studies. This is the first report of removal of the highly toxic Pb, Cd, and other heavy metals in binary and ternary systems based on the biosorption by an agrowaste. The potential of application for the treatment of solutions containing these heavy metals in multimetal solutions is indicated. (C) 2004 Elsevier B.V. All rights reserved.