화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.89, No.3, 805-809, 2006
Binder burnout from layers of alumina ceramics under centrifugal force
The effect of centrifugal force on the delamination of layered green body during binder burnout has been studied in terms of internal gas pressure resulting from gas flow kinetics in porous media. Here, a sheet of nano-particle of gamma-alumina was prepared by tape casting using polyvinyl butyral (PVB, binder) and dibutyl phthalate (DBP, plasticizer). Because of the fine pore structure (average pore size of 25 nm), molecular flow kinetics was applied to estimate internal pressure arising from evolved gases. Assuming that delamination is related to internal pressure, the interfacial strength of the layer was estimated. This strength was modified by applying a compressive pressure controlled by a centrifugal force. Because of the increased interfacial strength, delamination was suppressed, even during rapid heating. The compressive pressure required increased proportionally with increasing heating rate, a tendency that agreed with the expectation based on the gas flow kinetics in porous media.