Journal of the American Ceramic Society, Vol.90, No.4, 1094-1100, 2007
Preparation of matrix-type nickel oxide/samarium-doped ceria composite particles by spray pyrolysis
Matrix-type nickel oxide (NiO)/samarium-doped ceria (SDC) composite particles, in which NiO and SDC nano-particles were homogeneously dispersed, were synthesized by spray pyrolysis (SP) for an anode precursor of intermediate-temperature solid oxide fuel cells (IT-SOFCs). SP of an aqueous solution containing Ni, Ce, and Sm salts resulted in capsule-type composite particles that had NiO enveloped with SDC. The capsule-type composite particles actually prevent Ni aggregation between particles, but they cannot have a large contact area between nickel (Ni) and SDC. A matrix-type composite particle is expected to have a large contact area because the matrix-type composite is comprised of nanometer-sized Ni and SDC particles. An adequate addition of ethylene glycol successfully resulted in matrix-type NiO/SDC composite particles. The matrix-type composite particles also showed higher anode performance than the capsule-type composite particles in these experiments and they were effective as precursors of high-performance IT-SOFC anodes.