Combustion and Flame, Vol.116, No.1-2, 177-191, 1999
Combustion and heat transfer in model two-dimensional porous burners
A two-dimensional model of two simple porous burner geometries is developed to analyze the influence of multidimensionality on flames within pore scale structures. The first geometry simulates a honeycomb burner, in which a ceramic is penetrated by many small, straight, nonconnecting passages. The second geometry consists of many small parallel plates aligned with the flow direction. The Monte Carlo method is employed to calculate the viewfactors for radiation heat exchange in the second geometry. This model compares well with experiments on burning rates, operating ranges, and radiation output. Heat losses from the burner are found to reduce the burning rare. The flame is shown to be highly two-dimensional, and limitations of one-dimensional models are discussed. The effects of the material properties on the peak burning rate in these model porous media are examined. Variations in the flame on length scales smaller than the pore size are also present and are discussed and quantified.