화학공학소재연구정보센터
Journal of Crystal Growth, Vol.221, 1-11, 2000
Surface processes in OMVPE - the frontiers
Surface processes have long been known to be an important part of any epitaxial growth process. These processes are closely linked to the surface structure. However, until recently, the surface structure and the surface processes were difficult to study experimentally for conventional vapor-phase epitaxy (VPE) and liquid-phase epitaxy. Recently, optical techniques such as surface photo absorption (SPA) have been developed to the point that they give useful information about the surface reconstruction in situ during organometallic vapor-phase epitaxial(OMVPE) growth. Thus, they can in many cases be used to monitor the surface processes. A powerful method for controlling the surface structure during epitaxial growth using surfactants has recently emerged. This work describes the use of the surfactants Te, a donor, and As, Sb, and Bi, elements that are isoelectronic with P, on the properties of GaInP grown by OMVPE. These surfactants are found to significantly affect the microscopic arrangement of Ga and In atoms in the bulk solid by effecting a change in the surface structure. CuPt ordering is ubiquitous in III/V semiconductor alloys. It is significant because of the dependence of bandgap energy on the degree of order. The CuPt structure is formed due to the strain induced by the formation of [(1) over bar 1 0] P dimers on the surface. Each of the surfactants studied is found to result in disordering for layers grown using conditions that would otherwise produce highly ordered GaInP. Te yields disordered material with no change in the SPA spectra. However, the step velocity is found to increased markedly. Thus, the effect appears to be kinetic. Sb causes disordering due to a replacement of [(1) over bar 1 0] P dimers on the nominally (0 0 1) surface by larger Sb dimers, which reduces the strain-induced driving force for CuPt ordering at the surface. Thus, the effect is due to surface thermodynamics. For high Sb concentrations in the vapor, a triple-period ordered structure is formed. The appearance of this phase coincides with a distinct change in the surface reconstruction as indicated by SPA spectroscopy. Modulation of the TESb flow rate during growth was used to produce an abrupt order/disorder heterostructure with a bandgap energy difference of 135 meV with no significant change in solid composition at the interface. SPA results show that addition of As during growth also reduces the degree of order by displacing some of the [(1) over bar 1 0] P dimers on the surface. In this case, significant As concentrations in the solid of a few percent are observed. Thus, As is not an effective surfactant. Addition of Bi during growth results in a change in the surface reconstruction, as indicated by SPA spectroscopy, for Bi concentrations producing disordered GaInP. Unlike Sb and As, the Bi also causes a marked increase in the step velocity coincident with the loss of order. For singular (001) substrates, island formation is suppressed by Bi, resulting in the growth of much smoother layers. Modulation of the TMBi concentration during growth has been used to produce disorder/order heterostructures. The use of isoelectronic surfactants during growth to influence the properties of a semiconducting solid is a new and exciting development in control of the OMVPE growth process. It is expected that the use of isoelectronic surfactants to determine the surface reconstruction will find application in the growth of complex device structures. It also appears likely that this will be useful for controlling other characteristics of the growth process and the properties of the resultant semiconductor materials.