화학공학소재연구정보센터
Journal of Crystal Growth, Vol.221, 368-372, 2000
Structural and optical properties of InGaN/GaN multiple quantum wells: The effect of the number of InGaN/GaN pairs
The effect of the number of InGaN/GaN quantum well (QW) pairs on the interfacial structural and optical properties of InGaN/GaN multiple quantum wells (MQWs), as grown by low-pressure metalorganic vapor-phase epitaxy was examined. As the number of QW pairs increased, In-rich InGaN precipitates were more readily detected in the InCaN/GaN MQWs by cross-sectional transmission electron microscope. The intensity of the photoluminescence (PL) peak was decreased and the PL peak was red-shifted with an increase in the number of QW pairs. X-ray diffraction measurements revealed that the interfacial structure between InGaN and GaN were also deteriorated with the increasing number of QW pairs. These results can be attributed to the relaxation of an accumulated strain through the dislocations induced by an increase in the total thickness of the MQWs with an increase in the number of QW pairs. These results suggest that the defects such as dislocations facilitate the formation of In-rich phases in the InGaN layers in the MQWs.