Journal of Crystal Growth, Vol.232, No.1-4, 114-118, 2001
The influence of precipitant concentration on macromolecular crystal growth mechanisms
Atomic force microscopy was applied to investigate the influence of protein and precipitant (sodium-potassium tartrate) concentration on thaumatin crystal growth mechanisms. At constant protein concentration, a decrease of salt concentration from 0.8 to 0.085 M caused a transition of the crystal growth mechanism from two-dimensional nucleation to dislocation growth. At different, fixed concentrations of salt, the protein concentration, which does not induce multiple crystal nucleation, was increased from 8 to 60 mg/ml with corresponding increases in the tangential velocity of growth steps from 5 to 17.5 nm/s. Results from these experiments suggest that a highly concentrated protein solution, as might be found in a protein rich phase, may not induce crystal nucleation, but can promote crystal growth if screw dislocations are present in the crystal.
Keywords:atomic force microscopy;biocrystallization;biomaterials;growth models;nucleation;supersaturated solutions