Journal of Crystal Growth, Vol.232, No.1-4, 387-398, 2001
Effect of a mutation at arginine 301 on the stability, crystal quality and the preliminary crystallographic analysis of recombinant canavalin from Canavalia ensiformis
The technique of site-directed mutagenesis was used to implement rational amino acid changes in the plant storage protein canavalin, the major seed storage protein of the jack bean (Canavali ensiformis). The mutations were targeted to amino acids previously demonstrated to be involved in either the intra- or intermolecular salt bridges, thought to be responsible for maintaining the three-dimensional structure of the trimer. The amino acid changes were designed to disrupt the salt bridge interactions by substituting a neutral alanine for a negatively charged aspartate or glutamate, or by substituting a negatively charged glutamate for a positively charged arginine. The resulting recombinant mutants were subsequently expressed, purified, and crystallized. The crystals of the mutant versions of canavalin were compared to those of the wild-type canavalin by visual inspection and X-ray analysis. Of the crystals obtained for the mutants, those for the Arg301Glu mutation appeared to be more stable with fewer surface defects than any of the other mutants or the wild-type protein. The I/sigma ratio of reflections versus the resolution for the Arg301Glu mutation was approximately 30% greater over the entire resolution range than that obtained for any of the other mutations or for the wild-type. Additionally, the crystals of Arg301Glu mutations displayed lower mosaicity. Finally, the Arg301Glu mutation displayed a striking increase in the transition temperature when subjected to thermal denaturation. This paper describes the rationale and techniques behind the mutation of canavalin and suggests possible explanations for the observed and measured differences between the Arg301Glu mutant and the wild-type protein. We show the initial crystallographic structure analysis of this mutant and its preliminary implications.