화학공학소재연구정보센터
Journal of Crystal Growth, Vol.261, No.1, 87-92, 2004
A surface physicochemical rationale for calculus formation in the oral cavity
Surface free energies of dental hard tissues, including salivary conditioning films on enamel, play a crucial role in mineralization, dissolution and adhesion processes at the tooth surface. These mineralization reactions at oral surfaces control the development and progression of various diseases. In this paper, we compare the surface free energies, as derived from measured contact angles with liquids, of salivary conditioning films on enamel after exposure to dentifrices with and without anti-calculus additives, such as hexametaphosphate, pyrophosphate or zinc citrate trihydrate. Measured contact angles were converted to surface free energies using the concept of Lifshitz-Van der Waals and Lewis acid base components. Nearly all dentifrices yield film properties with a negative interfacial tension against an aqueous phase, which thermodynamically opposes mineralization. Concurrent with negative interfacial tensions, are positive values of the interfacial free energy of adhesion for octacalcium-phosphate (OCP) to the film surfaces, indicating that adhesion of newly mineralized, calcium-phosphate rich phases is thermodynamically unfavorable. Interestingly, two out of the three dentifrices with anti-calculus additives containing hexametaphosphate and pyrophosphate cause most positive interfacial free energies for OCP adhesion of 5.8 and 2.6 mJ/mZ, respectively. In summary, surface thermodynamical analyses indicate that anti-calculus effects of commercial dentifrice formulations are consistent with more negative interfacial tensions of salivary conditioning films on enamel surfaces and thus with more positive values for the interfacial free energy of adhesion toward newly formed mineral phases. A dentifrice containing hexametaphosphate yielded thermodynamic properties of salivary conditioning films most unfavorable for calculus formation. (C) 2003 Elsevier B.V. All rights reserved.