Journal of Crystal Growth, Vol.287, No.2, 562-565, 2006
Properties of III-N MOS structures with low-temperature epitaxially regrown ohmic contacts
A significant limitation in the fabrication of III-N MOSFET relates to the formation of ohmic contacts for enhancement-mode MOSFET structures. Unlike existing III-N HFET devices, which include a high free-carrier density two-dimensional electron gas (2DEG) in the semiconductor substrate, a MOSFET in either accumulation or inversion mode require low free-carrier concentrations for the semiconductor channel to have an off-state. The applied gate bias enhances the free-carrier density in the channel, turning on the FET. Unfortunately, a low free-carrier density substrate is problematic for the formation of ohmic contacts, a problem usually dealt with in silicon MOS through self-aligned ion implantation. The high annealing temperatures associated with activating implanted dopants to substitutional sites limits the use of ion implantation for III-N MOSFET fabrication. To overcome this difficulties, selected area epitaxial re-growth of doped III-N materials was developed to form source-drain contacts on otherwise low-doped III-N epitaxial substrates, yielding the needed N + /n-/N + or N + /p-/N + structures. Contact re-growth was performed by MOVPE using a silicon nitride dielectric mask defining plasma-etched recesses in the source-drain region. A significant acceleration in the growth rate and surface roughening was observed following re-growth relative to a non-selective area epitaxial growth due to the reduced fill-factor, motivating a general change in MOVPE-operating conditions during re-growth. As the re-growth was intentionally designed to limit the lateral extent of the source-drain regions, the MOVPE re-growth process was performed under conditions limiting lateral overgrowth. III-N MOSFET structures with epitaxial regrown contacts are projected to provide a pathway for low threshold voltage devices suitable for amplifier or logic applications. (c) 2005 Elsevier B.V. All rights reserved.