화학공학소재연구정보센터
Applied Surface Science, Vol.252, No.3, 723-729, 2005
Irreversible adsorption of colloid particles on heterogeneous surfaces
Irreversible adsorption of polystyrene latex particles of micrometer size range at heterogeneous surfaces was studied experimentally. Model substrate surfaces of controlled site coverage (heterogeneity degree) used in these studies were produced by preadsorption of positively charged latex particles on mica sheets. Deposition kinetics of latex was studied as a function of the site coverage, particle to site size ratio; and ionic strength of the colloid suspension. Particle distributions over surfaces and coverage were quantitatively evaluated by the direct microscope observation techniques using the diffusion cell. In this way, pair correlation function for various coverage degree and particle size ratio was evaluated. It also was determined the dependence of the jamming coverage of colloid particles on site coverage and ionic strength of the suspension. It was demonstrated that the decrease in the ionic strength of the suspension resulted in a significant decrease in the jamming coverage. This was attributed to the effect of the electrostatic field generated by the interface whose range was increased for low ionic strength. These experimental data revealed, in accordance with theoretical predictions derived from numerical simulations, that the multiple site coordination exerted a pronounced effect on the jamming coverage and the structure of adsorbed layers. It also was shown that this effect can be regulated by changes in the ionic strength of particle suspensions. This could allow one to produce particle clusters at the surface of targeted composition. (c) 2005 Elsevier B.V. All rights reserved.