화학공학소재연구정보센터
Applied Surface Science, Vol.252, No.13, 4773-4780, 2006
Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV-laser based two-beam interference
Two-beam interference method was applied to generate gratings having periods of 416 nm and 833 nm by the forth harmonic of a Nd:Yag laser on thin poly-carbonate films spin-coated onto silver layer-covered substrates. The dependence of the modulation depth on the fluence and number of laser pulses was investigated by atomic force microscopy. A secondary pattern appeared on very thin polymer layers thanks to the "p" polarized laser beam illumination induced self-organized processes. The conditions of the emergence of grating-coupling Caused additional plasmon resonance peak were determined for the sub-micrometer periodic polymer gratings. Surface plasmon resonance measurements were performed in attenuated total reflection arrangement to determine the effect of the angle between the plasmon propagation direction and the polymer groves on the grating-coupling. The effect of the modulation depth on the grating-coupling caused additional resonance minimum was also analyzed. We found coupling phenomena according to our calculations, the differences between the measured and theoretically predicted resonance curves were explained by the scattering on the complex surface structure. (c) 2005 Elsevier B.V. All rights reserved.