화학공학소재연구정보센터
Applied Surface Science, Vol.252, No.19, 6757-6760, 2006
Studies by imaging TOF-SIMS of bone mineralization on porous titanium implants after 1 week in bone
Anodic oxidation was used to grow porous layers on titanium discs. Six different oxidation procedures were used producing six different surfaces. The implants were inserted in rat bone (tibia) for 7 days. After implant retrieval, mineralization (hydroxyapatite formation) on the implant surfaces was investigated using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Bone tissue around the implants was sectioned and stained. The amount of bone in close apposition to the implant was calculated. The porosity showed great variation between the surfaces. Hydroxyapatite was detected on all surfaces. A slight positive correlation between porosity and mineralization was found, although the most porous surface was not the best mineralized one. Bone had formed around all implants after 7 days. The bone-to-metal contact for the porous implants did not differ significantly from the non-porous control. Porosity is known to influence cellular events. The results indicate that porosity could have an initial, positive influence on bone integration of implants, by stimulating the mineralization process. The methods used were found to be suitable tools for investigation of initial healing around implants in bone. (c) 2006 Elsevier B.V. All rights reserved.