화학공학소재연구정보센터
Applied Surface Science, Vol.253, No.1, 145-151, 2006
Advances in modulation spectroscopy: State-of-art photoreflectance metrology
In this paper, technological advances of modulation spectroscopy are presented, exploiting the sensitivity, room-temperature resolution, as well as the rapid and non-contact (non-destructive) nature of laser-induced photoreflectance (PR). A novel method of asynchronous (switching) modulation is presented to overcome laser-induced non-PR background effects, which limit or even obscure the complex (phase) PR response. The solid-state, acousto-optic based method may even be employed for non-uniform samples, and moreover, exhibits evidence for improved signal-to-noise level. Also presented is a novel optical design in order to achieve multiple, independent and simultaneous spectral acquisition, including autocalibration. Results are demonstrated for heavily doped n-type and p-type GaAs substrates, and also technologically important HBT device structures, with further applications also emphasised for HEMTs, LEDs, etc. The results demonstrate the importance and role of PR as a successful commercial metrology tool for existing state-of-art, as well as next generation semiconductor characterisation and statistical-process-control (SPC) equipment. (c) 2006 Elsevier B.V All rights reserved.