Applied Surface Science, Vol.253, No.3, 1222-1226, 2006
Stress driven phase transformation in ZrO2 film
Zirconia thin layers (250 nm) were deposited on stainless steel substrates using organo-metallic injection chemical vapour deposition (MOCVD) process with zirconium beta-diketonate as precursor at low oxygen pressure and 900 degrees C. Low roughness zirconia films were made up of a mixture of tetragonal and monoclinic phases depending on the process conditions. As the zirconia tetragonal phase is known to be stabilized by small grain size and/or internal compressive stresses, tensile and/or compressive external stress fields were applied at room temperature using a bending test device. Then, XRD measurements were used to determine tetragonal/monoclinic phase ratio and also residual stresses in the films before and after the tests. The film surface was observed at the various stages of the experiments by field electron gun-scanning electron microscopy (FEG-SEM). Under these stress fields, phase transformation occurs in the film, from tetragonal structure to a monoclinic one. Some preferential tetragonal planes give rise to monoclinic ones. The external stress field is also likely to redistribute the internal stresses within the films. (c) 2006 Elsevier B.V. All rights reserved.
Keywords:zirconia thin films;tetragonal and monoclinic phases;phase transformation;bending test;mechanical properties