화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.311, No.4, 884-890, 2003
Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses
Differentiation of embryonic stem (ES) cells into embryoid bodies (EBs) provides an in vitro system for the study of early lineage determination during mammalian development. We have previously reported that there are 247 CpG islands that potentially have tissue-dependent and differentially methylated regions (T-DMRs). This provided evidence that the formation of DNA methylation patterns at CpG islands is a crucial epigenetic event underlying mammalian development. Here we present an analysis by the restriction landmark genomic scanning (RLGS) using NotI as a landmark enzyme of the genome-wide methylation status of CpG islands of ES cells and EBs and of teratomas produced from ES cells. These results are considered in relation to the methylation status of CpG islands of genomic DNA from normal fetus (10.5 dpc) and adult tissues. We have prepared a DNA methylation panel that consists of 259 T-DMRs and includes novel T-DMRs that are distinctly methylated or unmethylated in the teratomas. The DNA methylation pattern was complex and differed for the ES cells, EBs, and teratomas, providing evidence that differentiation of cells involves both de novo DNA methylation as well as demethylation. Comparison of the numbers of T-DMRs, that were differentially methylated or unmethylated among the cells and tissue types studied, revealed that the teratomas were the most epigenetically different from ES cells. Thus, analysis of the DNA methylation profiles prepared in this study provides new insights into the differentiation of ES cells and development of fetus, EB, teratoma, and somatic tissues. (C) 2003 Elsevier Inc. All rights reserved.